期刊论文详细信息
Cell Transplantation
Antisense RNA Sequences Modulating the Ataxin-1 Message: Molecular Model of Gene Therapy for Spinocerebellar Ataxia Type 1, a Dominant-Acting Unstable Trinucleotide Repeat Disease
Article
Walter C. Low1  Youxin Gao2  Tao Zu2  R. Scott Mcivor3  Harry T. Orr3 
[1] Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA;Institute of Human Genetics, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA;Institute of Human Genetics, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA;Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA;
关键词: Cerebellum;    Ataxia;    Spinocerebellar ataxia type 1;    Gene therapy;   
DOI  :  10.3727/096368908786516729
 received in 2008-05-08, accepted in 2008-07-05,  发布年份 2008
来源: Sage Journals
PDF
【 摘 要 】

Spinocerebellar ataxia type 1 (SCA1) is a dominant inherited disease caused by expanded trinucleotide repeats resulting in an increased polyglutamine tract in the gene product. As a potential therapeutic approach for SCA1, we tested antisense RNAs targeting two regions of the ataxin-1 message. Single-stranded regions around the translational initiation site and the intron 8 splice donor site of the ataxin-1 message were identified by computer-assisted RNA secondary structure prediction. Plasmids were generated to contain a 254-bp antisense sequence spanning the translation initiation site (pLasBDini) or a 317-bp sequence spanning the intron 8 splice donor site (pLasBDei) of the ataxin-1 message. These plasmids were transfected into Chinese hamster ovary cells engineered to express either expanded or unexpanded ataxin-1 message and protein. Reduced levels of mutant ataxin-1 message (82 CAG repeats), wild-type ataxin-1 message (30 CAG repeats), and ataxin-1 protein were observed by Northern and Western blot analyses in pLasBDini-transfected clones. pLasBDei-transfected 293 cells exhibited a shift in ataxin-1 message to a size several kilobases longer than that of the natural message. Reverse transcriptase/polymerase chain reaction assays demonstrated the retention of message spanning the intron 8 splice acceptor and the inability to amplify sequences between exons 8 and 9, implying that normal splicing of intron 8 had been interrupted. We conclude that antisense RNAs were effective in reducing or modifying ataxin-1 messages in transfected cells, and may be an effective genetic strategy for therapy of SCA1 and similar dominant-acting neurological disorders.

【 授权许可】

Unknown   
© 2008 Cognizant Comm. Corp.

【 预 览 】
附件列表
Files Size Format View
RO202212201195312ZK.pdf 248KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  文献评价指标  
  下载次数:6次 浏览次数:1次