期刊论文详细信息
Applied Sciences
Joint Detection and Classification of Singing Voice Melody Using Convolutional Recurrent Neural Networks
Sangeun Kum1  Juhan Nam1 
[1] Music and Audio Computing Lab, Graduate School of Culture Technology, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea;
关键词: melody extraction;    singing voice detection;    joint detection and classification;    convolutional recurrent neural network;   
DOI  :  10.3390/app9071324
来源: DOAJ
【 摘 要 】

Singing melody extraction essentially involves two tasks: one is detecting the activity of a singing voice in polyphonic music, and the other is estimating the pitch of a singing voice in the detected voiced segments. In this paper, we present a joint detection and classification (JDC) network that conducts the singing voice detection and the pitch estimation simultaneously. The JDC network is composed of the main network that predicts the pitch contours of the singing melody and an auxiliary network that facilitates the detection of the singing voice. The main network is built with a convolutional recurrent neural network with residual connections and predicts pitch labels that cover the vocal range with a high resolution, as well as non-voice status. The auxiliary network is trained to detect the singing voice using multi-level features shared from the main network. The two optimization processes are tied with a joint melody loss function. We evaluate the proposed model on multiple melody extraction and vocal detection datasets, including cross-dataset evaluation. The experiments demonstrate how the auxiliary network and the joint melody loss function improve the melody extraction performance. Furthermore, the results show that our method outperforms state-of-the-art algorithms on the datasets.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:1次