期刊论文详细信息
Remote Sensing
Combination Analysis of Future Polar-Type Gravity Mission and GRACE Follow-On
Yufeng Nie1  Yunzhong Shen1  Qiujie Chen1 
[1] College of Surveying and Geo-Informatics, Tongji University, Shanghai 200092, China;
关键词: gravity field recovery;    GRACE Follow-On;    orbit configuration;    synergistic observation;   
DOI  :  10.3390/rs11020200
来源: DOAJ
【 摘 要 】

Thanks to the unprecedented success of Gravity Recovery and Climate Experiment (GRACE), its successive mission GRACE Follow-On (GFO) has been in orbit since May 2018 to continue measuring the Earth’s mass transport. In order to possibly enhance GFO in terms of mass transport estimates, four orbit configurations of future polar-type gravity mission (FPG) (with the same payload accuracy and orbit parameters as GRACE, but differing in orbit inclination) are investigated by full-scale simulations in both standalone and jointly with GFO. The results demonstrate that the retrograde orbit modes used in FPG are generally superior to prograde in terms of gravity field estimation in the case of a joint GFO configuration. Considering the FPG’s independent capability, the orbit configurations with 89- and 91-degree inclinations (namely FPG-89 and FPG-91) are further analyzed by joint GFO monthly gravity field models over the period of one-year. Our analyses show that the FPG-91 basically outperforms the FPG-89 in mass change estimates, especially at the medium- and low-latitude regions. Compared to GFO & FPG-89, about 22% noise reduction over the ocean area and 17% over land areas are achieved by the GFO & FPG-91 combined model. Therefore, the FPG-91 is worthy to be recommended for the further orbit design of FPGs.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次