期刊论文详细信息
Remote Sensing
Is Accurate Synoptic Altimetry Achievable by Means of Interferometric GNSS-R?
Jaan Praks1  Erkka Rouhe1  Jaakko Seppänen1  Serni Ribó2  Oleguer Nogués-Correig2  Estel Cardellach2  Fran Fabra2  Antonio Rius2  JuanCarlos Arco-Fernández2  Weiqiang Li2  Manuel Martín-Neira3 
[1] Department of Electronics and Nanoengineering, Aalto University, 02150 Espoo, Finland;Earth Observation Research Group, Institute of Space Sciences (ICE, CSIC), 08193 Barcelona, Spain;European Space Research and Technology Centre, European Space Agency, 2200 AG Noordwijk, The Netherlands;
关键词: GNSS-R;    altimetry;    interferometry;    radar;    GPS;    Galileo;    sea level;   
DOI  :  10.3390/rs11050505
来源: DOAJ
【 摘 要 】

This paper evaluates the capability of interferometric global navigation satellite system reflectometry (GNSS-R) to perform sea surface altimetry in a synoptic scenario. Such purpose, which requires the combination of the results from different GNSS signals, constitutes a unique characteristic of this approach. Interferometric GNSS-R group delay altimetry has been proven to be more precise than conventional GNSS-R. However, the self-consistency and accuracy of their synoptic solutions (simultaneous multi-static results) have never been proved before. In our work, we analyze a dataset of GNSS signals reflected off the Baltic Sea acquired during an airborne campaign using a receiver that was developed for such a purpose. Among other features, it enables beamformer capability in post-processing to get multiple and simultaneous GNSS signals under the interferometric approach’s restrictions. In particular, the signals from two GPS and two Galileo satellites, at two frequency bands (L1 and L5), covering an elevation range between 28° and 83°, are processed to retrieve sea surface height estimations. The results obtained are self-consistent among the different GNSS signals and data tracks, with discrepancies between 0.01 and 0.26 m. Overall, they agree with ancillary information at 0.40 m level, following a characteristic height gradient present at the experimental site.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次