期刊论文详细信息
Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis
Comparison of Methods for Smoothing Environmental Data with an Application to Particulate Matter PM10
Martina Čampulová1 
[1] Department of Statistics and Operation Analysis, Faculty of Business and Economics, Mendel University in Brno, Zemědělská 1, 613 00, Brno, Czech Republic;
关键词: data smoothing;    trend filtering;    environmental data;    particulate matter PM10;   
DOI  :  10.11118/actaun201866020453
来源: DOAJ
【 摘 要 】

Data smoothing is often required within the environmental data analysis. A number of methods and algorithms that can be applied for data smoothing have been proposed. This paper gives an overview and compares the performance of different smoothing procedures that estimate the trend in the data, based on the surrounding noisy observations that can be applied on environmental data. The considered methods include kernel regression with both global and local bandwidth, moving average, exponential smoothing, robust repeated median regression, trend filtering and approach based on discrete Fourier and discrete wavelet transform. The methods are applied to real data obtained by measurement of PM10 concentrations and compared in a simulation study.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:4次