| Energies | |
| Canonical Variate Residuals-Based Fault Diagnosis for Slowly Evolving Faults | |
| David Mba1  Xiaochuan Li1  Demba Diallo2  Claude Delpha3  | |
| [1] Faculty of Computing, Engineering and Media, De Montfort University, Leicester LE1 9BH, UK;Laboratoire Génie Electrique et Électronique de Paris (GeePs), CNRS, CentraleSupélec, Université Paris-Sud, 91190 Gif Sur Yvette, France;Laboratoire des Signaux et Systèmes (L2S), CNRS, CentraleSupélec, Université Paris-Sud, 91192 Gif Sur Yvette, France; | |
| 关键词: slowly evolving faults; fault detection; fault identification; | |
| DOI : 10.3390/en12040726 | |
| 来源: DOAJ | |
【 摘 要 】
This study puts forward a novel diagnostic approach based on canonical variate residuals (CVR) to implement incipient fault diagnosis for dynamic process monitoring. The conventional canonical variate analysis (CVA) fault detection approach is extended to form a new monitoring index based on Hotelling’s
【 授权许可】
Unknown