European Physical Journal C: Particles and Fields | |
Analysis of $$\Omega _c(3000)$$ Ω c ( 3000 ) , $$\Omega _c(3050)$$ Ω c ( 3050 ) , $$\Omega _c(3066)$$ Ω c ( 3066 ) , $$\Omega _c(3090)$$ Ω c ( 3090 ) and $$\Omega _c(3119)$$ Ω c ( 3119 ) with QCD sum rules | |
Zhi-Gang Wang1  | |
[1] Department of Physics, North China Electric Power University; | |
关键词: Operator Product Expansion; Negative Parity; Pole Residue; LHCb Collaboration; Baryon State; | |
DOI : 10.1140/epjc/s10052-017-4895-5 | |
来源: DOAJ |
【 摘 要 】
Abstract In this article, we assign $$\Omega _c(3000)$$ Ω c ( 3000 ) , $$\Omega _c(3050)$$ Ω c ( 3050 ) , $$\Omega _c(3066)$$ Ω c ( 3066 ) , $$\Omega _c(3090)$$ Ω c ( 3090 ) and $$\Omega _c(3119)$$ Ω c ( 3119 ) to the P-wave baryon states with $$J^P={\frac{1}{2}}^-$$ J P = 1 2 - , $${\frac{1}{2}}^-$$ 1 2 - , $${\frac{3}{2}}^-$$ 3 2 - , $${\frac{3}{2}}^-$$ 3 2 - and $${\frac{5}{2}}^-$$ 5 2 - , respectively, and study them with the QCD sum rules by introducing an explicit relative P-wave between the two s quarks. The predictions support assigning $$\Omega _c(3050)$$ Ω c ( 3050 ) , $$\Omega _c(3066)$$ Ω c ( 3066 ) , $$\Omega _c(3090)$$ Ω c ( 3090 ) and $$\Omega _c(3119)$$ Ω c ( 3119 ) to the P-wave baryon states with $$J^P={\frac{1}{2}}^-$$ J P = 1 2 - , $${\frac{3}{2}}^-$$ 3 2 - , $${\frac{3}{2}}^-$$ 3 2 - and $${\frac{5}{2}}^-$$ 5 2 - , respectively, where the two s quarks are in relative P-wave, while $$\Omega _c(3000)$$ Ω c ( 3000 ) can be assigned to the P-wave baryon state with $$J^{P}={\frac{1}{2}}^-$$ J P = 1 2 - , where the two s quarks are in relative S-wave.
【 授权许可】
Unknown