International Journal of Molecular Sciences | |
Reduction-Triggered Paclitaxel Release Nano-Hybrid System Based on Core-Crosslinked Polymer Dots with a pH-Responsive Shell-Cleavable Colorimetric Biosensor | |
HyunJeong Won1  SungYoung Park1  SeulGi Kim1  Gibaek Lee1  PhamThi My Phuong2  Benny Ryplida2  SukHo Bhang3  | |
[1] Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380-702, Korea;Department of Green Bio Engineering, Korea National University of Transportation, Chungju 380-702, Korea;School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea; | |
关键词: nano-hybrid matrix; polymer dots; controllable drug release; ph-sensitive; redox-responsive; | |
DOI : 10.3390/ijms20215368 | |
来源: DOAJ |
【 摘 要 】
Herein, we describe the fabrication and characterization of carbonized disulfide core-crosslinked polymer dots with pH-cleavable colorimetric nanosensors, based on diol dye-conjugated fluorescent polymer dots (L-PD), for reduction-triggered paclitaxel (PTX) release during fluorescence imaging-guided chemotherapy of tumors. L-PD were loaded with PTX (PTX loaded L-PD), via π−π stackings or hydrophobic interactions, for selective theragnosis by enhanced release of PTX after the cleavage of disulfide bonds by high concentration of glutathione (GSH) in a tumor. The nano-hybrid system showed fluorescence quenching behavior with less than 2% of PTX released under physiological conditions. However, in a tumor microenvironment, the fluorescence recovered at an acidic-pH, and PTX (approximately 100% of the drug release) was released efficiently out of the matrix by reduction caused by the GSH level in the tumor cells, which improved the effectiveness of the cancer treatment. Therefore, the colorimetric nanosensor showed promising potential in distinguishing between normal and cancerous tissues depending on the surrounding pH and GSH concentrations so that PTX can be selectively delivered into cancer cells for improved cancer diagnosis and chemotherapy.
【 授权许可】
Unknown