期刊论文详细信息
Polymers
Towards a Stable and High-Performance Hindered Phenol/Polymer-Based Damping Material Through Structure Optimization and Damping Mechanism Revelation
Junhui Wang1  Hongdi Zhou1  Jinlei Chen1  Kangming Xu1  Qiaoman Hu2 
[1] College of Materials and Chemical Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China;Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160, China;
关键词: hindered phenol/polymer-based hybrid damping materials;    stability;    high damping performance;    structure optimization;    damping mechanism;   
DOI  :  10.3390/polym11050884
来源: DOAJ
【 摘 要 】

Although hindered phenol/polymer-based hybrid damping materials, with excellent damping performance, attract more and more attention, the poor stability of hindered phenol limits the application of such promising materials. To solve this problem, a linear hindered phenol with amorphous state and low polarity was synthesized and related polyurethane-based hybrid materials were prepared in this study. The structure and state of the hindered phenol were confirmed by nuclear magnetic resonance spectrum, Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The existence of intermolecular hydrogen bonds (HBs) between hindered phenol and polyurethane was confirmed by FT-IR, and the amorphous state of the hybrids was confirmed by XRD. Moreover, by a combination of molecular dynamics simulation and dynamic mechanical analysis, the relationship between the structure optimization of the hindered phenol and the high damping performance of the hybrids was quantitatively revealed. By constructing the synthetic hindered phenol, the intramolecular HBs between hindered phenols were restricted, while the strength and concentration of the intermolecular HBs increased by increasing the amount of hindered phenol. Thus, intermolecular interactions were enhanced, which lead to the compact chain packing of polyurethane, extended chain packing of hindered phenol, and good dispersion of hindered phenol in polyurethane. Therefore, the stability of the hindered phenol and the damping properties of the hybrids were both improved. The experiment results are expected to provide some useful information for the design and fabrication of high-performance polymeric damping materials.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次