期刊论文详细信息
Entropy
Multifractality through Non-Markovian Stochastic Processes in the Scale Relativity Theory. Acute Arterial Occlusions as Scale Transitions
Decebal Vasincu1  Vlad Ghizdovat2  NicolaeDan Tesloianu3  IrinaIuliana Costache3  AdrianValentin Cotirlet4  Lucian Dobreci4  Alina Gavrilut5  Igor Nedelciuc6  Andrei Zala7  CristinaMarcela Rusu8  Maricel Agop8 
[1] Biophysics Department, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania;Biophysics and Medical Physics Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania;Cardiology Department, “Sf. Spiridon” University Hospital, 700111 Iasi, Romania;Department of Physical and Occupational Therapy, “VasileAlecsandri” University of Bacau, 600115 Bacau, Romania;Faculty of Mathematics, “Alexandru Ioan Cuza” University, Carol I Bd., No. 11, 700506 Iasi, Romania;Institute of Cardiovascular Disease “G.I.M. Georgescu”, 700503 Iasi, Romania;Municipal Emergency Hospital Moineşti, 1 Zorilor Street, 605400 Moinești, Romania;Physics Department, “Gheorghe Asachi” Technical University, Prof. dr. docent Dimitrie Mangeron Rd., No. 59A, 700050 Iasi, Romania;
关键词: multifractality;    non-Markovian stochastic process;    scale relativity theory;    Bingham fluid;    acute arterial occlusion;   
DOI  :  10.3390/e23040444
来源: DOAJ
【 摘 要 】

By assimilating biological systems, both structural and functional, into multifractal objects, their behavior can be described in the framework of the scale relativity theory, in any of its forms (standard form in Nottale’s sense and/or the form of the multifractal theory of motion). By operating in the context of the multifractal theory of motion, based on multifractalization through non-Markovian stochastic processes, the main results of Nottale’s theory can be generalized (specific momentum conservation laws, both at differentiable and non-differentiable resolution scales, specific momentum conservation law associated with the differentiable–non-differentiable scale transition, etc.). In such a context, all results are explicated through analyzing biological processes, such as acute arterial occlusions as scale transitions. Thus, we show through a biophysical multifractal model that the blocking of the lumen of a healthy artery can happen as a result of the “stopping effect” associated with the differentiable-non-differentiable scale transition. We consider that blood entities move on continuous but non-differentiable (multifractal) curves. We determine the biophysical parameters that characterize the blood flow as a Bingham-type rheological fluid through a normal arterial structure assimilated with a horizontal “pipe” with circular symmetry. Our model has been validated based on experimental clinical data.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次