期刊论文详细信息
Physics Letters B
Contact geometry in superconductors and New Massive Gravity
Cesar S. Lopez-Monsalvo1  Marco Maceda2  Daniel Flores-Alfonso3 
[1] Corresponding author.;Conacyt-Universidad Autónoma Metropolitana Azcapotzalco, Avenida San Pablo Xalpa 180, Azcapotzalco, Reynosa Tamaulipas, C.P. 02200, Ciudad de México, Mexico;Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, A.P. 55-534, C.P. 09340, Ciudad de México, Mexico;
关键词: Contact geometry;    New Massive Gravity;   
DOI  :  
来源: DOAJ
【 摘 要 】

The defining property of every three-dimensional ε-contact manifold is shown to be equivalent to requiring the fulfillment of London's equation in 2+1 electromagnetism. To illustrate this point, we show that every such manifold that is also K-contact and η-Einstein is a vacuum solution to the most general quadratic-curvature gravity action, in particular of New Massive Gravity. As an example we analyze S3 equipped with a contact structure together with an associated metric tensor such that the canonical generators of the contact distribution are null. The resulting Lorentzian metric is shown to be a vacuum solution of three-dimensional massive gravity. Moreover, by coupling the New Massive Gravity action to Maxwell-Chern-Simons we obtain a class of charged solutions stemming directly from the para-contact metric structure. Finally, we repeat the exercise for the Abelian Higgs theory.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:9次