| Microorganisms | |
| Pontiella desulfatans gen. nov., sp. nov., and Pontiella sulfatireligans sp. nov., Two Marine Anaerobes of the Pontiellaceae fam. nov. Producing Sulfated Glycosaminoglycan-like Exopolymers | |
| Yuemei Lin1  Michel Koenen2  NicoleJ. Bale2  Laura Villanueva2  DaanM. van Vliet3  AlfonsJ. M. Stams3  Irene Sánchez-Andrea3  | |
| [1] Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands;Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ) and Utrecht University, Landsdiep 4, 1797 SZ ’t Horntje (Texel), The Netherlands;Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands; | |
| 关键词: novel anaerobes; CAZymes; glycosaminoglycans; Kiritimatiella; Black Sea; | |
| DOI : 10.3390/microorganisms8060920 | |
| 来源: DOAJ | |
【 摘 要 】
Recently, we isolated two marine strains, F1T and F21T, which together with Kiritimatiella glycovorans L21-Fru-ABT are the only pure cultures of the class Kiritimatiellae within the phylum Verrucomicrobiota. Here, we present an in-depth genome-guided characterization of both isolates with emphasis on their exopolysaccharide synthesis. The strains only grew fermentatively on simple carbohydrates and sulfated polysaccharides. Strains F1T, F21T and K. glycovorans reduced elemental sulfur, ferric citrate and anthraquinone-2,6-disulfonate during anaerobic growth on sugars. Both strains produced exopolysaccharides during stationary phase, probably with intracellularly stored glycogen as energy and carbon source. Exopolysaccharides included N-sulfated polysaccharides probably containing hexosamines and thus resembling glycosaminoglycans. This implies that the isolates can both degrade and produce sulfated polysaccharides. Both strains encoded an unprecedently high number of glycoside hydrolase genes (422 and 388, respectively), including prevalent alpha-L-fucosidase genes, which may be necessary for degrading complex sulfated polysaccharides such as fucoidan. Strain F21T encoded three putative glycosaminoglycan sulfotransferases and a putative sulfate glycosaminoglycan biosynthesis gene cluster. Based on phylogenetic and chemotaxonomic analyses, we propose the taxa Pontiella desulfatans F1T gen. nov., sp. nov. and Pontiella sulfatireligans F21T sp. nov. as representatives of the Pontiellaceae fam. nov. within the class Kiritimatiellae.
【 授权许可】
Unknown