期刊论文详细信息
Frontiers in Pharmacology
Use of a Baculovirus-Mammalian Cell Expression-System for Expression of Drug-Metabolizing Enzymes: Optimization of Infection With a Focus on Cytochrome P450 3A4
Peter I. Mackenzie1  Akane Kimura2  Yuji Ishii2  Yoshitaka Tanaka2  Keiko Fujimoto2  Yuko Hirota2  Yuu Miyauchi2  Madoka Sawai3  Shinji Takechi3 
[1] Clinical Pharmacology, College of Medicine and Public Health, Flinders Medical Centre and Flinders University, Adelaide, SA, Australia;Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan;Laboratory of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan;
关键词: drug-metabolizing enzyme;    heterologous expression;    baculovirus;    mammalian cell;    bac-mam system;    cytochrome P450 3A4;   
DOI  :  10.3389/fphar.2022.832931
来源: DOAJ
【 摘 要 】

Heterologous expression systems are important for analyzing the effects of genetic factors including single nucleotide polymorphisms on the functions of drug-metabolizing enzymes. In this study, we focused on a baculovirus-mammalian cell (Bac-Mam) expression system as a safer and more efficient approach for this purpose. The baculovirus-insect cell expression system is widely utilized in large-scale protein expression. Baculovirus has been shown to also infect certain mammalian cells, although the virus only replicates in insect cells. With this knowledge, baculovirus is now being applied in a mammalian expression system called the Bac-Mam system wherein a gene-modified baculovirus is used whose promotor is replaced with one that can function in mammalian cells. We subcloned open-reading frames of cytochrome P450 3A4 (CYP3A4), UDP-glucuronosyltransferase (UGT) 1A1, and UGT2B7 into a transfer plasmid for the Bac-Mam system, and prepared recombinant Bac-Mam virus. The obtained virus was amplified in insect Sf9 cells and used to infect mammalian COS-1 cells. Expression of CYP3A4, UGT1A1, and UGT2B7 in COS-1 cell homogenates were confirmed by immunoblotting. Optimum infection conditions including the amount of Bac-Mam virus, culture days before collection, and concentration of sodium butyrate, an enhancer of viral-transduction were determined by monitoring CYP3A4 expression. Expressed CYP3A4 showed appropriate activity without supplying hemin/5-aminolevulinic acid or co-expressing with NADPH-cytochrome P450 reductase. Further, we compared gene transfer efficiency between the Bac-Mam system and an established method using recombinant plasmid and transfection reagent. Our results indicate that the Bac-Mam system can be applied to introduce drug-metabolizing enzyme genes into mammalian cells that are widely used in drug metabolism research. The expressed enzymes are expected to undergo appropriate post-translational modification as they are in mammalian bodies. The Bac-Mam system may thus accelerate pharmacogenetics and pharmacogenomics research.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次