Sensors | |
Impact of Fabric Properties on Textile Pressure Sensors Performance | |
Laura Mazzocchetti1  Beatrice Fraboni2  EnricoGianfranco Campari2  Luca Possanzini2  Marta Tessarolo2  | |
[1] Department of Industrial Chemistry, University of Bologna, Via Risorgimento 4, 40136 Bologna, Italy;Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna,Italy; | |
关键词: textile pressure sensor; e-textile; dynamic mode; pedot:pss; | |
DOI : 10.3390/s19214686 | |
来源: DOAJ |
【 摘 要 】
In recent years, wearable technologies have attracted great attention in physical and chemical sensing applications. Wearable pressure sensors with high sensitivity in low pressure range (<10 kPa) allow touch detection for human-computer interaction and the development of artificial hands for handling objects. Conversely, pressure sensors that perform in a high pressure range (up to 100 kPa), can be used to monitor the foot pressure distribution, the hand stress during movements of heavy weights or to evaluate the cyclist’s pressure pattern on a bicycle saddle. Recently, we developed a fully textile pressure sensor based on a conductive polymer, with simple fabrication and scalable features. In this paper, we intend to provide an extensive description on how the mechanical properties of several fabrics and different piezoresistive ink formulation may have an impact in the sensor’s response during a dynamic operation mode. These results highlight the complexity of the system due to the presence of various parameters such as the fabric used, the conductive polymer solution, the operation mode and the desired pressure range. Furthermore, this work can lead to a protocol for new improvements and optimizations useful for adapting textile pressure sensors to a large variety of applications.
【 授权许可】
Unknown