期刊论文详细信息
Atmosphere
Source Characteristics of Atmospheric CO2 and CH4 in a Northeastern Highland Area of South Korea
Sung-Chul Hong1  Sang-Kyun Kim1  Jeonghyeon Seo1  Youngsook Lyu1  Chang-Keun Song2  Hyeon-Kook Kim2  Myung-Hwan Shin3 
[1] Climate and Air Quality Research Department, National Institute of Environmental Research, Incheon 22689, Korea;School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea;Transportation Pollution Research Center, National Institute of Environmental Research, Incheon 22689, Korea;
关键词: greenhouse gas measurements;    Ganseong Observatory;    bivariate polar plot;    emission inventory;    concentration weighted trajectory;    source characterization;   
DOI  :  10.3390/atmos11050509
来源: DOAJ
【 摘 要 】

This study aims to present the atmospheric CO2 and CH4 levels and analyze their source characteristics at an observation station in a northeastern highland area of Korea for the 2012–2014 period. We summarized the measured CO2 and CH4 concentrations for the 2012–2014 period. In addition, we characterized the major source of the rise of CO2 and CH4 in Ganseong (GS) by employing bivariate polar plots (BPP) and the concentration weighted trajectory (CWT) method together with currently available information on emission sources. For the three years, CO2 was generally high in the order of winter, spring, autumn and summer and CH4 high in the order of winter, autumn, spring and summer. The observed positive correlations between the hourly CO2 and CH4 in every season suggested the possibility of shared common emission sources, but there is a necessity for elucidation on this in the future. The BPP analysis indicated the local sources that are likely to be associated with the rise of greenhouse gases (GHGs) observed at GS (combustion in the village, plant respirations nearby GS, and mobile emissions on the nearby road for CO2 and leakages from the gas stations along the road and agricultural activities for CH4). Synthesizing the CWT results together with emission source information from national and global emission inventories, we identified likely major source areas and characterized major emission sources. For example, the identified major sources for the winter CO2 are coal combustion, coal washing and industrial activities in Inner Mongolia, northern and the northeastern China, fuel burning for the energy for the infrastructure of a northwestern city in South Korea, and the manufacturing industry and fuel combustion in the northern parts of North Korea. Hopefully, these kinds of results will aid environmental researchers and decision-makers in performing more in-depth studies for GHG sources in order to derive effective mitigation strategies.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:1次