期刊论文详细信息
Entropy
Chaos in a Cancer Model via Fractional Derivatives with Exponential Decay and Mittag-Leffler Law
José Francisco Gómez-Aguilar1  Hasib Khan2  Dumitru Baleanu3  María Guadalupe López-López4  Victor Manuel Alvarado-Martínez4 
[1] CONACyT-Tecnológico Nacional de Mexico/CENIDET, Interior Internado Palmira s/n Col. Palmira C.P., Cuernavaca 62490, Mexico;College of Engineering, Mechanics and Materials, Hohai University, Nanjing 210098, China;Department of Mathematics, Faculty of Art and Sciences, Cankaya University, Ankara 06790, Turkey;Tecnológico Nacional de Mexico/CENIDET, Interior Internado Palmira s/n Col. Palmira C.P., Cuernavaca 62490, Mexico;
关键词: cancer model;    Caputo-Fabrizio fractional derivative;    Atangana-Baleanu fractional derivative;    Sumudu-Picard iterative method;   
DOI  :  10.3390/e19120681
来源: DOAJ
【 摘 要 】

In this paper, a three-dimensional cancer model was considered using the Caputo-Fabrizio-Caputo and the new fractional derivative with Mittag-Leffler kernel in Liouville-Caputo sense. Special solutions using an iterative scheme via Laplace transform, Sumudu-Picard integration method and Adams-Moulton rule were obtained. We studied the uniqueness and existence of the solutions. Novel chaotic attractors with total order less than three are obtained.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:2次