期刊论文详细信息
Cell Reports
Dis3l2-Mediated Decay Is a Quality Control Pathway for Noncoding RNAs
Marzia Munafò1  Richard I. Gregory1  Mehdi Pirouz1  Peng Du1 
[1] Division of Hematology/Oncology, Stem Cell Program, Boston Children’s Hospital, Boston, MA 02115, USA;
关键词: Dis3l2;    lncRNA;    Rmrp;    7SL;    snRNA;    TUTase;    uridylation;    Zcchc6;    Zcchc11;   
DOI  :  10.1016/j.celrep.2016.07.025
来源: DOAJ
【 摘 要 】

Mutations in the 3′-5′ exonuclease DIS3L2 are associated with Perlman syndrome and hypersusceptibility to Wilms tumorigenesis. Previously, we found that Dis3l2 specifically recognizes and degrades uridylated pre-let-7 microRNA. However, the widespread relevance of Dis3l2-mediated decay of uridylated substrates remains unknown. Here, we applied an unbiased RNA immunoprecipitation strategy to identify Dis3l2 targets in mouse embryonic stem cells. The disease-associated long noncoding RNA (lncRNA) Rmrp, 7SL, as well as several other Pol III-transcribed noncoding RNAs (ncRNAs) were among the most highly enriched Dis3l2-bound RNAs. 3′-Uridylated Rmrp, 7SL, and small nuclear RNA (snRNA) species were highly stabilized in the cytoplasm of Dis3l2-depleted cells. Deep sequencing analysis of Rmrp 3′ ends revealed extensive oligouridylation mainly on transcripts with imprecise ends. We implicate the terminal uridylyl transferases (TUTases) Zcchc6/11 in the uridylation of these ncRNAs, and biochemical reconstitution assays demonstrate the sufficiency of TUTase-Dis3l2 for Rmrp decay. This establishes Dis3l2-mediated decay (DMD) as a quality-control pathway that eliminates aberrant ncRNAs.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:1次