Frontiers in Psychology | |
Kenyon Cell Subtypes/Populations in the Honeybee Mushroom Bodies: Possible Function Based on Their Gene Expression Profiles, Differentiation, Possible Evolution, and Application of Genome Editing | |
关键词: honeybee; hymenoptera; brain; mushroom body; Kenyon cell; learning and memory; | |
DOI : 10.3389/fpsyg.2018.01717 | |
来源: DOAJ |
【 摘 要 】
Mushroom bodies (MBs), a higher-order center in the honeybee brain, comprise some subtypes/populations of interneurons termed as Kenyon cells (KCs), which are distinguished by their cell body size and location in the MBs, as well as their gene expression profiles. Although the role of MBs in learning ability has been studied extensively in the honeybee, the roles of each KC subtype and their evolution in hymenopteran insects remain mostly unknown. This mini-review describes recent progress in the analysis of gene/protein expression profiles and possible functions of KC subtypes/populations in the honeybee. Especially, the discovery of novel KC subtypes/populations, the “middle-type KCs” and “KC population expressing FoxP,” necessitated a redefinition of the KC subtype/population. Analysis of the effects of inhibiting gene function in a KC subtype-preferential manner revealed the function of the gene product as well as of the KC subtype where it is expressed. Genes expressed in a KC subtype/population-preferential manner can be used to trace the differentiation of KC subtypes during the honeybee ontogeny and the possible evolution of KC subtypes in hymenopteran insects. Current findings suggest that the three KC subtypes are unique characteristics to the aculeate hymenopteran insects. Finally, prospects regarding future application of genome editing for the study of KC subtype functions in the honeybee are described. Genes expressed in a KC subtype-preferential manner can be good candidate target genes for genome editing, because they are likely related to highly advanced brain functions and some of them are dispensable for normal development and sexual maturation in honeybees.
【 授权许可】
Unknown