期刊论文详细信息
Microorganisms
Salinity and Temperature Influence Growth and Pigment Production in the Marine-Derived Fungal Strain Talaromyces albobiverticillius 30548
Cathie Milhau1  Léa Gérard1  Francesco Vinale2  Mireille Fouillaud3  Laurent Dufossé3  Mekala Venkatachalam3 
[1] Ecole Supérieure d’Ingénieurs Réunion Océan Indien—ESIROI Agroalimentaire, 2 Rue Joseph Wetzell, F-97490 Sainte-Clotilde, Ile de la Réunion, France;Istituto per la Protezione Sostenibile delle Piante (IPSP-CNR/Dipartimento di Agraria, Università degli Studi di Napoli Federico II, IT-80055 Portici (NA), Italy;Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments—LCSNSA EA 2212, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis CEDEX 9, Ile de la Réunion, France;
关键词: sea salts;    Talaromyces albobiverticillius;    Réunion Island;    fungal pigments;    biomass;    color coordinates;   
DOI  :  10.3390/microorganisms7010010
来源: DOAJ
【 摘 要 】

Marine-derived fungi that inhabit severe changing environments have gained increasing interest for their ability to produce structurally unique natural products. Fungi belonging to the Talaromyces and the close Penicillium genera are among the most promising microbes for bioactive compound production, including colored metabolites. Coupling pigment producing capability with bioactive effectiveness would be a valuable challenge in some specific fields such as dyeing, cosmeceutical, or food industries. In this sense, Talaromyces albobiverticillius 30548, a red pigment producing strain, has been isolated from the marine environment of Reunion Island, Indian Ocean. In this research, we analyzed the effect of temperatures (21–27 °C) and salinity levels (0–9%) on fungal growth and pigment production. Maximum pigment yield was obtained in non-salted media, when cultured at 27 °C after 10 days of submerged fermentation in PDB. However, maximum dry biomass production was achieved at stressed condition with 9% sea salts concentrated media at the same temperature. The results indicate that salinity of the culture media positively influences the growth of the biomass. Inversely, pigment production decreases with increase in salinity over 6%. Color coordinates of secreted pigments were expressed in CIELAB color system. The hue angles (h°) ranged from red to yellow colors. This indicated that the color distribution of fungal pigments depends on the salinity in the culture media. This study emphasizes the impact of abiotic stress (salt and temperature) on the growth and metabolome of marine-derived fungal strains.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次