Buildings | |
Effects of the Design Parameters of Ridge Vents on Induced Buoyancy-Driven Ventilation | |
Chi-Ming Lai1  Sung-Chin Chung2  Yi-Pin Lin2  Ching-Mei Chen3  | |
[1] Department of Civil Engineering, National Cheng Kung University, Tainan 701, Taiwan;Department of Creative Design, National Yunlin University of Science and Technology, Douliou 640, Taiwan;Graduate School of Design, National Yunlin University of Science and Technology, Douliou 640, Taiwan; | |
关键词: natural ventilation; building ventilation; roof; ridge vent; roof-mounted monitor; CFD; | |
DOI : 10.3390/buildings12020112 | |
来源: DOAJ |
【 摘 要 】
With ridge vents that are commonly used in building ventilation applications as the research object, this study analyzed how design parameters affect the efficiency of thermal buoyancy-driven ventilation induced by ridge vents through computational fluid dynamics (CFD). The design parameters of ridge vents include the width S, height H, and eave overhang E. In consideration of engineering practices, the parameter ranges were set as follows: S = 1.2, 1.8, 2.4, and 3 m; H = 0.3, 0.6, 0.9, and 1.2 m; and E = 0, 0.3, and 0.6 m. The results show that when a ridge vent is under buoyancy-driven ventilation, the height H serves as the dominant design parameter. Correlation equations of the induced ventilation rates with the relevant ridge vent design parameters are provided.
【 授权许可】
Unknown