期刊论文详细信息
BMC Bioinformatics
Mechanism-aware imputation: a two-step approach in handling missing values in metabolomics
Jonathan P. Dekermanjian1  Katerina Kechris1  Debmalya Nandy1  Debashis Ghosh1  Elin Shaddox1 
[1] Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus;
关键词: Missing data;    Imputation;    Machine learning;    Metabolomics;   
DOI  :  10.1186/s12859-022-04659-1
来源: DOAJ
【 摘 要 】

Abstract When analyzing large datasets from high-throughput technologies, researchers often encounter missing quantitative measurements, which are particularly frequent in metabolomics datasets. Metabolomics, the comprehensive profiling of metabolite abundances, are typically measured using mass spectrometry technologies that often introduce missingness via multiple mechanisms: (1) the metabolite signal may be smaller than the instrument limit of detection; (2) the conditions under which the data are collected and processed may lead to missing values; (3) missing values can be introduced randomly. Missingness resulting from mechanism (1) would be classified as Missing Not At Random (MNAR), that from mechanism (2) would be Missing At Random (MAR), and that from mechanism (3) would be classified as Missing Completely At Random (MCAR). Two common approaches for handling missing data are the following: (1) omit missing data from the analysis; (2) impute the missing values. Both approaches may introduce bias and reduce statistical power in downstream analyses such as testing metabolite associations with clinical variables. Further, standard imputation methods in metabolomics often ignore the mechanisms causing missingness and inaccurately estimate missing values within a data set. We propose a mechanism-aware imputation algorithm that leverages a two-step approach in imputing missing values. First, we use a random forest classifier to classify the missing mechanism for each missing value in the data set. Second, we impute each missing value using imputation algorithms that are specific to the predicted missingness mechanism (i.e., MAR/MCAR or MNAR). Using complete data, we conducted simulations, where we imposed different missingness patterns within the data and tested the performance of combinations of imputation algorithms. Our proposed algorithm provided imputations closer to the original data than those using only one imputation algorithm for all the missing values. Consequently, our two-step approach was able to reduce bias for improved downstream analyses.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:5次