期刊论文详细信息
Sensors
Modifying Hata-Davidson Propagation Model for Remote Sensing in Complex Environments Using a Multifactional Drone
Faris A. Almalki1  Ben Othman Soufiene2 
[1] Department of Computer Engineering, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;PRINCE Laboratory Research, ISITcom, Hammam Sousse, University of Sousse, Sousse 4023, Tunisia;
关键词: IoT;    propagation model;    tuning models;    remote sensing;    drones;    complex environment;   
DOI  :  10.3390/s22051786
来源: DOAJ
【 摘 要 】

The coupling of drones and IoT is a major topics in academia and industry since it significantly contributes towards making human life safer and smarter. Using drones is seen as a robust approach for mobile remote sensing operations, such as search-and-rescue missions, due to their speed and efficiency, which could seriously affect victims’ chances of survival. This paper aims to modify the Hata-Davidson empirical propagation model based on RF drone measurement to conduct searches for missing persons in complex environments with rugged areas after manmade or natural disasters. A drone was coupled with a thermal FLIR lepton camera, a microcontroller, GPS, and weather station sensors. The proposed modified model utilized the least squares tuning algorithm to fit the data measured from the drone communication system. This enhanced the RF connectivity between the drone and the local authority, as well as leading to increased coverage footprint and, thus, the performance of wider search-and-rescue operations in a timely fashion using strip search patterns. The development of the proposed model considered both software simulation and hardware implementations. Since empirical propagation models are the most adjustable models, this study concludes with a comparison between the modified Hata-Davidson algorithm against other well-known modified empirical models for validation using root mean square error (RMSE). The experimental results show that the modified Hata-Davidson model outperforms the other empirical models, which in turn helps to identify missing persons and their locations using thermal imaging and a GPS sensor.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:1次