期刊论文详细信息
Proceedings of the XXth Conference of Open Innovations Association FRUCT
Design of a 3D Indoor Localization System Enabling Augmented Reality TV Applications
Francesco Sottile1  Luigi Coriasco2  Claudio Pastrone2  Shiva Ehsanibalajorshary2  Roberto Iacoviello3  Davide Zappia3 
[1] LINKS Foundation, Italy;Politecnico di Torino, Italy;Radiotelevisione Italiana, Italy;
关键词: indoor localization;    real time locating systems;    ultra-wide band;    extended kalman filter;    augmented reality;   
DOI  :  10.23919/FRUCT53335.2021.9599984
来源: DOAJ
【 摘 要 】

This paper focuses on the design of a robust Real Time Locating Systems (RTLS) based on the Ultra-Wide Band (UWB) technology for Augmented Reality (AR) applications in TV studios that require artists and/or a presenter to be accurately localized. According to a UWB-based measurement campaign, carried out in a TV studio environment, ranging measurements are heavily affected by the human body interference. Indeed, lots of outliers are present as the UWB receiver may synchronize to reflected paths, which result to be much stronger than the direct one. As a consequence, range errors are very large. In this context, to improve the localization performance, we increased the redundancy of the RTLS by employing more than one tag to localize the artists on the TV scene. In particular, we have applied the Extended Kalman Filter (EKF) algorithm to work with two and three tags. Moreover, an outlier detection and correction procedure have been defined and adopted for the ranging phase. The resulting localization performance, based on real range measurements, shows that the EKF with two tags outperforms by 83.5% the one with single tag.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次