期刊论文详细信息
Latin American Journal of Solids and Structures
Laminated Composites Buckling Analysis Using Lamination Parameters, Neural Networks and Support Vector Regression
关键词: Composite laminate;    lamination parameters;    buckling;    support vector regression;    neural network;   
DOI  :  10.1590/1679-78251237
来源: DOAJ
【 摘 要 】

AbstractThis work presents a metamodel strategy to approximate the buckling load response of laminated composite plates. In order to obtain representative data for training the metamodel, some laminates with different stacking sequences are generated using the Latin hypercube sampling plan. These stacking sequences are converted into lamination parameters so that the number of inputs of the metamodel becomes constant. The buckling load for each laminate of the training set are computed using finite elements. In this way the inputs-outputs metamodel training pairs are the lamination parameters and the corresponding bucking load. Neural network and support vector regression metamodels are employed to approximate the buckling load. The performances of the metamodels are compared in a test case and the results are shown and discussed.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:8次