期刊论文详细信息
Agriculture
Spinach (Spinacea oleracea L.) Response to Salinity: Nutritional Value, Physiological Parameters, Antioxidant Capacity, and Gene Expression
JonathanJ. Halvorson1  Devinder Sandhu2  Xuan Liu2  JorgeF. S. Ferreira2 
[1] Northern Great Plains Research Laboratory (USDA-ARS), Mandan, ND 58554, USA;US Salinity Laboratory (USDA-ARS), Riverside, CA 92507, USA;
关键词: abiotic stress;    crop yield;    salt stress;    oxalic acid content;    biochemical responses;   
DOI  :  10.3390/agriculture8100163
来源: DOAJ
【 摘 要 】

Scarcity of good-quality irrigation water is a major impediment to meet food demand for a growing world population. Recycled waters may be available locally more affordably, but their higher salinity is a concern. Salinity effects on spinach mineral composition, antioxidant capacity, photosynthesis, and gene expression have not been established. Spinach cv. Raccoon was greenhouse-grown and irrigated with four levels of water salinity of electrical conductivities (ECiw) of 1.4 (control) or ranging from 3.6 to 9.4 dS m−1, combined with three levels of K (3, 5, and 7 meq L−1). Irrigation waters had 2, 20, 40, and 80 meq L−1 of NaCl. After 23 treatment days, plants significantly accumulated Na and Cl in shoots and roots with increasing salinity, regardless of the K concentration in the irrigation water. Plants exhibited no visual symptoms of salt toxicity and there were no differences in shoot growth. Plants maintained their overall concentrations of mineral nutrients, physiological parameters, and oxalic acid across salinity treatments. Leaves retained all their antioxidant capacity at 20 meq L−1 NaCl, and 74% to 66% at 40 and 80 meq L−1 NaCl, respectively. Expression analyses of ten genes, that play important role in salt tolerance, indicated that although some genes were upregulated in plants under salinity, compared to the control, there was no association between Na or K tissue concentrations and gene expression. Results clearly show that spinach maintains its growth, mineral composition, and antioxidant capacity up to ECiw = 9.4 dS m−1. As this salinity is equivalent to a soil salinity of 4.5 dS m−1, spinach can tolerate over two-fold its previously-considered salinity threshold. Thus, growers can cultivate spinach using recycled, saline, waters without detriment to shoot biomass accumulation, and nutritional value.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次