期刊论文详细信息
Micromachines
Electromechanical Modeling of Vibration-Based Piezoelectric Nanogenerator with Multilayered Cross-Section for Low-Power Consumption Devices
JuanC. Anaya-Zavaleta1  LuzAntonio Aguilera-Cortés1  Francisco López-Huerta2  ErnestoA. Elvira-Hernández3  Eustaquio Martínez-Cisneros3  AgustínL. Herrera-May3 
[1] Departamento de Ingeniería Mecánica, DICIS, Universidad de Guanajuato, Carretera Salamanca-Valle de Santiago km 3.5 + 1.8, Salamanca 36885, Mexico;Facultad de Ingeniería Eléctrica y Electrónica, Universidad Veracruzana, Calzada Ruíz Cortines 455, Boca del Río, Veracruz 94294, Mexico;Micro and Nanotechnology Research Center, Universidad Veracruzana, Calzada Ruiz Cortines 455, Boca del Río, Veracruz 94294, Mexico;
关键词: double-clamped multilayered beam;    bending resonant frequency;    Euler–Bernoulli beam theory;    Macaulay method;    piezoelectric nanogenerator;    Rayleigh method;   
DOI  :  10.3390/mi11090860
来源: DOAJ
【 摘 要 】

Piezoelectric nanogenerators can convert energy from ambient vibrations into electrical energy. In the future, these nanogenerators could substitute conventional electrochemical batteries to supply electrical energy to consumer electronics. The optimal design of nanogenerators is fundamental in order to achieve their best electromechanical behavior. We present the analytical electromechanical modeling of a vibration-based piezoelectric nanogenerator composed of a double-clamped beam with five multilayered cross-sections. This nanogenerator design has a central seismic mass (910 μm thickness) and substrate (125 μm thickness) of polyethylene terephthalate (PET) as well as a zinc oxide film (100 nm thickness) at the bottom of each end. The zinc oxide (ZnO) films have two aluminum electrodes (100 nm thickness) through which the generated electrical energy is extracted. The analytical electromechanical modeling is based on the Rayleigh method, Euler–Bernoulli beam theory and Macaulay method. In addition, finite element method (FEM) models are developed to estimate the electromechanical behavior of the nanogenerator. These FEM models consider air damping at atmospheric pressure and optimum load resistance. The analytical modeling results agree well with respect to those of FEM models. For applications under accelerations in y-direction of 2.50 m/s2 and an optimal load resistance of 32,458 Ω, the maximum output power and output power density of the nanogenerator at resonance (119.9 Hz) are 50.44 μW and 82.36 W/m3, respectively. This nanogenerator could be used to convert the ambient mechanical vibrations into electrical energy and supply low-power consumption devices.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:2次