期刊论文详细信息
Biology
Retinoic Acid-Differentiated Neuroblastoma SH-SY5Y Is an Accessible In Vitro Model to Study Native Human Acid-Sensing Ion Channels 1a (ASIC1a)
Aleksandr P. Kalinovskii1  Sergey G. Koshelev1  Kseniya I. Lubova1  Sergey A. Kozlov1  Yaroslav A. Andreev1  Dmitry I. Osmakov1  Yuliya V. Korolkova1 
[1] Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia;
关键词: acid-sensing ion channel (ASIC);    neuroblastoma SH-SY5Y;    neuronal differentiation;    dopaminergic neurons;    retinoic acid;    drug development;   
DOI  :  10.3390/biology11020167
来源: DOAJ
【 摘 要 】

Human neuroblastoma SH-SY5Y is a prominent neurobiological tool used for studying neuropathophysiological processes. We investigated acid-sensing (ASIC) and transient receptor potential vanilloid-1 (TRPV1) and ankyrin-1 (TRPA1) ion channels present in untreated and differentiated neuroblastoma SH-SY5Y to propose a new means for their study in neuronal-like cells. Using a quantitative real-time PCR and a whole-cell patch-clamp technique, ion channel expression profiles, functionality, and the pharmacological actions of their ligands were characterized. A low-level expression of ASIC1a and ASIC2 was detected in untreated cells. The treatment with 10 μM of retinoic acid (RA) for 6 days resulted in neuronal differentiation that was accompanied by a remarkable increase in ASIC1a expression, while ASIC2 expression remained almost unaltered. In response to acid stimuli, differentiated cells showed prominent ASIC-like currents. Detailed kinetic and pharmacological characterization suggests that homomeric ASIC1a is a dominant isoform among the present ASIC channels. RA-treatment also reduced the expression of TRPV1 and TRPA1, and minor electrophysiological responses to their agonists were found in untreated cells. Neuroblastoma SH-SY5Y treated with RA can serve as a model system to study the effects of different ligands on native human ASIC1a in neuronal-like cells. This approach can improve the characterization of modulators for the development of new neuroprotective and analgesic drugs.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:1次