Agronomy | |
Potato (Solanum tuberosum L.) Growth in Response to Foliar Silicon Application | |
Wanda Wadas1  | |
[1] Institute of Agriculture and Horticulture, Siedlce University of Natural Science and Humanities, 14 B. Prusa, 08-110 Siedlce, Poland; | |
关键词: sodium silicate; biostimulant; plant height; above-ground biomass; leaf area; tuber weight; | |
DOI : 10.3390/agronomy11122423 | |
来源: DOAJ |
【 摘 要 】
As silicon induces abiotic stress tolerance in crop plants, it was hypothesized that foliar silicon application could improve potato growth in an early crop culture. The effect of dosage (0.25 dm3·ha−1 or 0.50 dm3·ha−1) and time (the leaf development stage, BBCH 14–16, tuber initiation stage, BBCH 40–41, or both the leaf development stage and tuber initiation stage) of application of the silicon-based biostimulant Optysil (200 g SiO2 and 24 g Fe in 1 dm3) on potato growth was investigated. Optysil caused an increase in plant height and above-ground plant biomass, enlarged leaf area and decreased leaf weight ratio (LWR), and, as a result, increased tuber number and tuber weight per plant. The effect of Optysil depended on a water deficit during potato growth. The average tuber weight per plant in the cultivation treated with Optysil was higher by 23% under periodic water deficits during potato growth, and by 13% under drought conditions, than in the cultivation without the biostimulant. Dosage of Optysil had a significant effect on above-ground plant biomass and leaf area in the warm and arid growing season. Under drought stress, Optysil at 0.50 dm3·ha−1 stimulated potato growth more than at 0.25 dm3·ha−1. Under periodic water deficits during potato growth, the time of Optysil application affected potato growth more than the biostimulant dosage. The plants produced greater above-ground biomass and had a larger leaf area with two Optysil applications; one in the initial plant growth period (BBCH 14–16), and a repeated treatment in the tuber initiation stage (BBCH 40–41). The tuber weight per plant was positively correlated with the plant height, above-ground plant biomass, leaf area, and LWR.
【 授权许可】
Unknown