International Journal of Molecular Sciences | |
SSGraphCPI: A Novel Model for Predicting Compound-Protein Interactions Based on Deep Learning | |
Xun Wang1  Shudong Wang1  Jiali Liu1  Chaogang Zhang1  | |
[1] College of Computer Science and Technology, China University of Petroleum, Qingdao 266555, China; | |
关键词: deep learning; compound-protein interactions; compound properties; protein preperties; IC50 value; | |
DOI : 10.3390/ijms23073780 | |
来源: DOAJ |
【 摘 要 】
Identifying compound-protein (drug-target, DTI) interactions (CPI) accurately is a key step in drug discovery. Including virtual screening and drug reuse, it can significantly reduce the time it takes to identify drug candidates and provide patients with timely and effective treatment. Recently, more and more researchers have developed CPI’s deep learning model, including feature representation of a 2D molecular graph of a compound using a graph convolutional neural network, but this method loses much important information about the compound. In this paper, we propose a novel three-channel deep learning framework, named SSGraphCPI, for CPI prediction, which is composed of recurrent neural networks with an attentional mechanism and graph convolutional neural network. In our model, the characteristics of compounds are extracted from 1D SMILES string and 2D molecular graph. Using both the 1D SMILES string sequence and the 2D molecular graph can provide both sequential and structural features for CPI predictions. Additionally, we select the 1D CNN module to learn the hidden data patterns in the sequence to mine deeper information. Our model is much more suitable for collecting more effective information of compounds. Experimental results show that our method achieves significant performances with RMSE (Root Mean Square Error) = 2.24 and
【 授权许可】
Unknown