Sensors | |
Baseline Correction of Acceleration Data Based on a Hybrid EMD–DNN Method | |
Zengshun Chen1  Tuanhai Chen2  Yanjian Peng2  LiKai Zhang3  Jun Fu3  Chenfeng Yuan3  | |
[1] Institute of Engineering Mechanics, China Earthquake Administration, Harbin 061019, China;Research and Development Center, Gas & Power Group, CNOOC, Beijing 100028, China;School of Civil Engineering, Chongqing University, Chongqing 400045, China; | |
关键词: empirical mode decomposition; deep neural network; baseline drift; baseline correction; displacement measurement; | |
DOI : 10.3390/s21186283 | |
来源: DOAJ |
【 摘 要 】
Measuring displacement response is essential in the field of structural health monitoring and seismic engineering. Numerical integration of the acceleration signal is a common measurement method of displacement data. However, due to the circumstances of ground tilt, low-frequency noise caused by instruments, hysteresis of the transducer, etc., it would generate a baseline drift phenomenon in acceleration integration, failing to obtain an actual displacement response. The improved traditional baseline correction methods still have some problems, such as high baseline correction error, poor adaptability, and narrow application scope. This paper proposes a deep neural network model based on empirical mode decomposition (EMD–DNN) to solve baseline correction by removing the drifting trend. The feature of multiple time sequences that EMD obtains is extracted via DNN, achieving the real displacement time history of prediction. In order to verify the effectiveness of the proposed method, two natural waves (EL centro wave, Taft wave) and one Artificial wave are selected to test in a shaking table test. Comparing the traditional methods such as the least squares method, EMD, and DNN method, EMD–DNN has the best baseline correction effect in terms of the evaluation indexes: Mean Absolute Error (MAE), Mean Square Error (MSE), Root Mean Square Error (RMSE), and degree of fit (R-Square).
【 授权许可】
Unknown