期刊论文详细信息
International Journal of Mathematics and Mathematical Sciences
A class of univalent functions with varying arguments
M.Jayamala1  K. S. Padmanabhan1 
[1] The Ramanujan Institute, University of Madras, Madras 600 005, India;
关键词: varying arguments;    Ruscheweyh derivative;    distortion theorems;    coefficient estimates.;   
DOI  :  10.1155/S016117129200067X
来源: DOAJ
【 摘 要 】

f(z)=z+∑m=2∞amzm is said to be in V(θn) if the analytic and univalent function f in the unit disc E is nozmalised by f(0)=0, f′(0)=1 and arg an=θn for all n. If further there exists a real number β such that θn+(n−1)β≡π(mod2π) then f is said to be in V(θn,β). The union of V(θn,β) taken over all possible sequence {θn} and all possible real number β is denoted by V. Vn(A,B) consists of functions f∈V such thatDn+1f(z)Dnf(z)=1+Aw(z)1+Bw(z),−1≤A

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:1次