期刊论文详细信息
Sensors
Digital Biomarker Representing Frailty Phenotypes: The Use of Machine Learning and Sensor-Based Sit-to-Stand Test
Bijan Najafi1  Ramkinker Mishra1  Catherine Park1  Ilse Torres2  Amir Sharafkhaneh2  Christina Nguyen2  MonS. Bryant2  AanandD. Naik3 
[1] Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA;Telehealth Cardio-Pulmonary Rehabilitation Program, Medical Care Line, Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA;VA Health Services Research and Development Center for Innovations in Quality, Effectiveness and Safety, Houston, TX 77021, USA;
关键词: physical frailty;    frailty phenotype;    machine learning;    digital health;    sit-to-stand test;    wearable technology;   
DOI  :  10.3390/s21093258
来源: DOAJ
【 摘 要 】

Since conventional screening tools for assessing frailty phenotypes are resource intensive and unsuitable for routine application, efforts are underway to simplify and shorten the frailty screening protocol by using sensor-based technologies. This study explores whether machine learning combined with frailty modeling could determine the least sensor-derived features required to identify physical frailty and three key frailty phenotypes (slowness, weakness, and exhaustion). Older participants (n = 102, age = 76.54 ± 7.72 years) were fitted with five wearable sensors and completed a five times sit-to-stand test. Seventeen sensor-derived features were extracted and used for optimal feature selection based on a machine learning technique combined with frailty modeling. Mean of hip angular velocity range (indicator of slowness), mean of vertical power range (indicator of weakness), and coefficient of variation of vertical power range (indicator of exhaustion) were selected as the optimal features. A frailty model with the three optimal features had an area under the curve of 85.20%, a sensitivity of 82.70%, and a specificity of 71.09%. This study suggests that the three sensor-derived features could be used as digital biomarkers of physical frailty and phenotypes of slowness, weakness, and exhaustion. Our findings could facilitate future design of low-cost sensor-based technologies for remote physical frailty assessments via telemedicine.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次