Polymers | |
Optimization of Encapsulation by Ionic Gelation Technique of Cryoconcentrated Solution: A Response Surface Methodology and Evaluation of Physicochemical Characteristics Study | |
Patricio Orellana-Palma1  María Guerra-Valle2  Guillermo Petzold3  | |
[1] Departamento de Ingeniería en Alimentos, Facultad de Ingeniería, Campus Andrés Bello, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1720010, Chile;Departamento de Nutrición y Dietética, Facultad de Ciencias para el Cuidado de la Salud, Campus Concepción, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile;Laboratorio de Crioconcentración, Departamento de Ingeniería en Alimentos, Facultad de Ciencias de la Salud y de los Alimentos, Campus Fernando May, Universidad del Bío-Bío, Av. Andrés Bello 720, Chillán 3780000, Chile; | |
关键词: encapsulation; hydrogel; beads; cryoconcentration; model solution; | |
DOI : 10.3390/polym14051031 | |
来源: DOAJ |
【 摘 要 】
The objective of this study was to evaluate the optimal conditions to encapsulate cryoconcentrate solutions via ionic gelation technique. Hydrogel beads were prepared using alginate (1%, 2% and 3% (w/w)) and cornstarch (0.5%, 1% and 2% (w/w)). Later, a sucrose/acid gallic solution was concentrated through block freeze concentration (BFC) at three cycles. Thus, each solution was a mixture with the respective combination of alginate/cornstarch. The final solution was added drop-wise on a CaCl2 solution, allowing the formation of calcium alginate-cornstarch hydrogel beads filled with sucrose/acid gallic solution or cryoconcentrated solution. The results showed that alginate at 2% (w/w) and cornstarch at 2% (w/w) had the best efficiency to encapsulate any solution, with values close to 63.3%, 90.2%, 97.7%, and 75.1%, and particle sizes of approximately 3.09, 2.82, 2.73, and 2.64 mm, for initial solution, cycle 1, cycle 2, and cycle 3, respectively. Moreover, all the samples presented spherical shape. Therefore, the appropriate content of alginate and cornstarch allows for increasing the amount of model cryoconcentrated solution inside of the hydrogel beads. Furthermore, the physicochemical and morphological characteristics of hydrogel beads can be focused for future food and/or pharmaceutical applications, utilizing juice or extract concentrated by BFC as the solution encapsulated.
【 授权许可】
Unknown