Physics Letters B | |
Neutron–19C scattering: Towards including realistic interactions | |
关键词: Three-body scattering; Efimov physics; Faddeev equations; Pauli-forbidden states; | |
DOI : 10.1016/j.physletb.2017.07.036 | |
来源: DOAJ |
【 摘 要 】
Low-energy neutron–C19 scattering is studied in the three-body n+n+C18 model using a realistic nn potential and a number of shallow and deep n–C18 potentials, the latter supporting deeply-bound Pauli-forbidden states that are projected out. Exact Faddeev-type three-body scattering equations for transition operators including two- and three-body forces are solved in the momentum-space partial-wave framework. Phase shift, inelasticity parameter, and cross sections are calculated. For the elastic n–C19 scattering in the JΠ=0+ partial wave the signatures of the Efimov physics, i.e., the pole in the effective-range expansion and the elastic cross section minimum, are confirmed for both shallow and deep models, but with clear quantitative differences between them, indicating the importance of a proper treatment of deeply-bound Pauli-forbidden states. In contrast, the inelasticity parameter is mostly correlated with the asymptotic normalization coefficient of the C19 bound state. Finally, in the regime of very weak C19 binding and near-threshold (bound or virtual) excited C20 state the standard Efimovian behaviour of the n–C19 scattering length and cross section was confirmed, resolving the discrepancies between earlier studies by other authors (Mazumdar et al., 2006 [20], Yamashita et al., 2007 [23]).
【 授权许可】
Unknown