期刊论文详细信息
Journal of Applied Fluid Mechanics
Performance Improvement and Two-Phase Flow Study of a Piezoelectric Micropump with Tesla Nozzle-Diffuser Microvalves
S. Derakhshan1  H. Pourrahmani1  M. Rashidi1  B. Beigzadeh1 
[1] Iran University of Science and Technology 1, Tehran, 16846-13114, Iran;
关键词: Micropump;    Piezoelectric;    Tesla-type valve;    Nozzle-diffuser valve;    Multiphase flow.;   
DOI  :  
来源: DOAJ
【 摘 要 】

The Present article aims to design a piezoelectric micropump using a combinational form of microvalves with sufficient diodicity in low-pressure gradients. The goal is to enhance the capability of piezoelectric micropumps with Tesla-type valves in order to deliver insulin. Tesla-type valves are in the category of passive valves which have sufficient diodicity in case of high-pressure gradients. However, low mass flow rates are often required in drug delivery devices. In this paper, the performance of MT135 Tesla-type valve in low pressure-gradient flows has been investigated and a range of reunion angles, which have not been studied before has been examined by numerical solutions. Inspired by nozzle-diffuser valve types, some changes in the bypass path of the microvalve have been exerted to boost the diodicity of the valve in low-pressure conditions that resulted in 9.97% increase of diodicity. At last but not least, the velocity gradients in single-phase flow of water has been attained and performance of micropump toward other kinds of flows has been investigated by a volume of fluid (VOF) model including water as the primary phase and air as the secondary one. To complete the analysis, a VOF model consisting of an arbitrary kind of Casson fluid with the primary phase of water was reached and discussed.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次