期刊论文详细信息
Entropy
Landauer’s Principle a Consequence of Bit Flows, Given Stirling’s Approximation
Sean Devine1 
[1] School of Management, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand;
关键词: Landauer’s principle;    statistical mechanics;    algorithmic information theory;    algorithmic entropy;    conservation of bits;    heat capacity;   
DOI  :  10.3390/e23101288
来源: DOAJ
【 摘 要 】

According to Landauer’s principle, at least kBln2T Joules are needed to erase a bit that stores information in a thermodynamic system at temperature T. However, the arguments for the principle rely on a regime where the equipartition principle holds. This paper, by exploring a simple model of a thermodynamic system using algorithmic information theory, shows the energy cost of transferring a bit, or restoring the original state, is kBln2T Joules for a reversible system. The principle is a direct consequence of the statistics required to allocate energy between stored energy states and thermal states, and applies outside the validity of the equipartition principle. As the thermodynamic entropy of a system coincides with the algorithmic entropy of a typical state specifying the momentum degrees of freedom, it can quantify the thermodynamic requirements in terms of bit flows to maintain a system distant from the equilibrium set of states. The approach offers a simple conceptual understanding of entropy, while avoiding problems with the statistical mechanic’s approach to the second law of thermodynamics. Furthermore, the classical articulation of the principle can be used to derive the low temperature heat capacities, and is consistent with the quantum version of the principle.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次