期刊论文详细信息
Frontiers in Marine Science
Population Genomics and Lagrangian Modeling Shed Light on Dispersal Events in the Mediterranean Endemic Ericaria zosteroides (=Cystoseira zosteroides) (Fucales)
Charles-François Boudouresque1  Marc Verlaque1  Thierry Thibaut1  Cristele Chevalier1  Christel Pinazo1  Lauric Reynes1  Aurélie Blanfuné1  Sandrine Ruitton1  Myriam Valero2  Stéphane Mauger2  Stéphane Sartoretto3  Didier Aurelle4 
[1] Aix Marseille Univ, Université de Toulon, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Institut Méditerranéen d’Océanologie, Marseille, France;IRL 3614, Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, Université Catholique, Université Australe du Chili, Roscoff, France;Institut Français de Recherche pour l’Exploitation de la Mer, Zone Portuaire de Brégaillon, La Seyne-sur-mer, France;Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, École Pratique des Hautes Études, Paris, France;
关键词: connectivity;    Fucales;    Mediterranean;    marine forest;    population genomics;    Lagrangian modelling;   
DOI  :  10.3389/fmars.2021.683528
来源: DOAJ
【 摘 要 】

Dispersal is a central process that affects population growth, gene flow, and ultimately species persistence. Here we investigate the extent to which gene flow occurs between fragmented populations of the deep-water brown algae Ericaria zosteroides (Turner) Greville (Sargassaceae, Fucales). These investigations were performed at different spatial scales from the bay of Marseille (western Provence) to Corsica. As dispersal of zygotes is shown to be limited over distances beyond a few meters, we used a multidisciplinary approach, based on Lagrangian modeling and population genomics to test the hypothesis that drifting of fertile parts of thallus (eggs on fertile branches), mediated by ocean currents, enable occasional gene flow between populations. Therefore we assessed the respective contribution of oceanographic connectivity, geographical isolation, and seawater temperatures to the genetic structure of this species. The genetic structure was assessed using 10,755 neutral SNPs and 12 outlier SNPs genotyped by dd-RAD sequencing in 261 individuals of E. zosteroides. We find that oceanographic connectivity is the best predictor of genetic structure, while differentiation in outlier SNPs can be explained by the depth of populations, as emphasized by the minimum seawater temperature predictor. However, further investigations will be necessary for clarifying how depth drives adaptive genetic differentiation in E. zosteroides. Our analyses revealed that local hydrodynamic conditions are correlated with the very high divergence of one population in the Bay of Marseille. Overall, the levels of gene flow mediated by drifting were certainly not sufficient to counteract differentiation by local genetic drift, but enough to allow colonization several kilometers away. This study stresses the need to consider secondary dispersal mechanisms of presumed low dispersal marine species to improve inference of population connectivity.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次