Bioactive Materials | |
Capturing dynamic biological signals via bio-mimicking hydrogel for precise remodeling of soft tissue | |
Qimanguli Saiding1  Xinliang Chen2  Zhen Wang2  Zhengwei Cai2  Fei Wang2  Liucheng Zhang2  Wenguo Cui2  Lianfu Deng3  Liang Cheng4  Gang Chen4  | |
[1] Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing, 314000, China;Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China;Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing, 314000, China;Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910 Hengshan Road, Shanghai, 200030, PR China; | |
关键词: Biological signals; Physiological phase; Hydrogel; Chemotactic; Soft tissue remodeling; | |
DOI : | |
来源: DOAJ |
【 摘 要 】
Soft tissue remodeling is a sophisticated process that sequentially provides dynamic biological signals to guide cell behavior. However, capturing these signals within hydrogel and directing over time has still been unrealized owing to the poor comprehension of physiological processes. Here, a bio-mimicking hydrogel is designed via thiol-ene click reaction to capture the early physical signal triggered by inflammation, and the chemical signals provided with chemokine and natural adhesion sites, which guaranteed the precise soft tissue remodeling. This bio-mimicking hydrogel efficiently facilitated cell anchoring, migration, and invasion in the 3D matrix due to the permissive space and the interaction with integrin receptors. Besides, the covalently grafted chemokine-like peptide is optimal for colonization and functional differentiation of endothelial cells through a HIF-1α dependent signal pathway. Furthermore, the early polarization of macrophages, collagen deposition and angiogenesis in rat acute wound model, and the increased blood perfusion in mouse skin flap model have confirmed that the bio-mimicking hydrogel realized precise soft tissue remodeling and opens new avenues for the phased repair of different tissues such as nerve, myocardium, and even bone.
【 授权许可】
Unknown