期刊论文详细信息
Journal of Fungi
Exploring the Diversity and Aromatic Hydrocarbon Degrading Potential of Epiphytic Fungi on Hornbeams from Chronically Polluted Areas
Anabel Saran1  Jaco Vangronsveld2  Łukasz Kowalkowski2  Valeria Imperato2  Francois Rineau2  Sofie Thijs2  Anneleen Thoonen2  Stanislaw W. Gawronski3  Miguel Portillo-Estrada4 
[1] AIC-CONICET, Scientific Research Agency, Santa Rosa 6360, La Pampa, Argentina;Department of Biology, Centre for Environmental Sciences, Hasselt University, BE3590 Diepenbeek, Belgium;Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, 02-787 Warsaw, Poland;Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, BE2610 Wilrijk, Belgium;
关键词: air pollution;    phyllosphere;    phylloremediation;    fungi;   
DOI  :  10.3390/jof7110972
来源: DOAJ
【 摘 要 】

Plants can ‘catch’ and mitigate airborne pollutants and are assisted by fungi inhabiting their leaves. The structure and function of the fungal communities inhabiting the phyllosphere of hornbeam trees growing in two chronically polluted areas, the oilfield of Bóbrka and the city center of Warsaw, were compared to the ones growing in one nature reserve, the Białowieża National Park. Fungi were isolated and characterized both phylogenetically and functionally for their potential role in air pollution mitigation. Both culture-dependent (e.g., enzyme assays and tolerance tests) and culture-independent methods (e.g., ITS and shotgun sequencings) were used. Furthermore, the degradation potential of the fungi was assessed by gas chromatography mass spectrometry (GC-MS). Shotgun sequencing showed that the phyllosphere fungal communities were dominated by fungi belonging to the phylum Ascomycota. Aureobasidium was the only genus detected at the three locations with a relative abundance ≥1.0%. Among the cultivated epiphytic fungi from Bóbrka, Fusarium sporotrichioides AT11, Phoma herbarum AT15, and Lophiostoma sp. AT37 showed in vitro aromatic hydrocarbon degradation potential with laccase activities of 1.24, 3.62, and 7.2 μU L−1, respectively, and peroxidase enzymes with activities of 3.46, 2.28, and 7.49 μU L−1, respectively. Furthermore, Fusarium sporotrichioides AT11 and Phoma herbarum AT15 tolerated exposure to airborne naphthalene and benzene. Lophiostoma sp. AT37 was the most tolerant to exposure to these pollutants, in line with being the best potential aromatic hydrocarbon degrader isolated in this study.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:1次