期刊论文详细信息
Energies
High-Frequency Non-Invasive Magnetic Field-Based Condition Monitoring of SiC Power MOSFET Modules
Martin P. Foster1  Kamyar Mehran2  Javad Naghibi2 
[1] Department of Electronic and Electrical Engineering, The University of Sheffield, Sheffield S10 2TN, UK;School of Electronics Engineering and Computer Science, Queen Mary University of London, London E1 4NS, UK;
关键词: condition monitoring;    current distribution;    failure onset;    magnetic field;    reliability;    silicon carbide;   
DOI  :  10.3390/en14206720
来源: DOAJ
【 摘 要 】

Current distribution anomaly can be used to indicate the onset of package-related failures modes in Silicon Carbide power MOSFET modules. In this paper, we propose to obtain the wire bond’s magnetic field profile using an array of Tunnel Magneto-Resistance (TMR) sensors, and characterise the small changes in the current density distribution to find the onset of the wire bond degradation processes, including wire bond lift-off, wire bond cracking, and wire bond fracture. We propose a novel condition monitoring technique where a non-galvanic high-bandwidth sensing and a reliability model monitor the health of the power switches. We designed a dedicated calibration set-up to examine the sensor array and calibrated to demonstrate the adequate sensitivity to a minimum 5% current anomaly detection in a single wire bond of the switching devices operating with 50 kHz switching frequency. We use a hardware-in-the-loop (HIL) experimental set-up to replicate wire bond-related failures in a 1200 V/55 A SiC MOSFET power module of a DC/DC Boost converter. Signal conditioning circuits are further designed to amplify and buffer the sensor readings. Experimental results showed the proposed technique is able to detect a wide range of package-related failures.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:3次