期刊论文详细信息
Microorganisms
Current Knowledge on the Oxidative-Stress-Mediated Antimicrobial Properties of Metal-Based Nanoparticles
Ariane Boudier1  Nour Mammari2  Raphaël E. Duval2  Emmanuel Lamouroux2 
[1] Université de Lorraine, CITHEFOR, F-54000 Nancy, France;Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France;
关键词: metal-based nanoparticles;    oxidative stress;    ROS;    antibacterial activity;    antibacterial mechanisms;   
DOI  :  10.3390/microorganisms10020437
来源: DOAJ
【 摘 要 】

The emergence of multidrug-resistant (MDR) bacteria in recent years has been alarming and represents a major public health problem. The development of effective antimicrobial agents remains a key challenge. Nanotechnologies have provided opportunities for the use of nanomaterials as components in the development of antibacterial agents. Indeed, metal-based nanoparticles (NPs) show an effective role in targeting and killing bacteria via different mechanisms, such as attraction to the bacterial surface, destabilization of the bacterial cell wall and membrane, and the induction of a toxic mechanism mediated by a burst of oxidative stress (e.g., the production of reactive oxygen species (ROS)). Considering the lack of new antimicrobial drugs with novel mechanisms of action, the induction of oxidative stress represents a valuable and powerful antimicrobial strategy to fight MDR bacteria. Consequently, it is of particular interest to determine and precisely characterize whether NPs are able to induce oxidative stress in such bacteria. This highlights the particular interest that NPs represent for the development of future antibacterial drugs. Therefore, this review aims to provide an update on the latest advances in research focusing on the study and characterization of the induction of oxidative-stress-mediated antimicrobial mechanisms by metal-based NPs.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:1次