期刊论文详细信息
International Journal of Applied Earth Observations and Geoinformation
Biomass estimation of pasture plots with multitemporal UAV-based photogrammetric surveys
Marcos Arza-García1  Mariluz Gil-Docampo2  José Grefa-Sánchez3  Izar Sinde-González3  Diana Yánez-Simba3  Víctor Abril-Porras4  Patricio Pérez-Guerrero4 
[1] Corresponding author.;Grupo de investigación Geoespacial, Departamento de Ciencias de la Tierra y la Construcción, Universidad de las Fuerzas Armadas ESPE, 171103, Av. General Rumiñahui s/n, Sangolquí, Ecuador;Agroforestry Engineering Department, University of Santiago de Compostela, Higher Polytechnic School of Engineering, Campus Universitario s/n, 27002 Lugo, Spain;Carrera de Ingeniería Geográfica y del Medio Ambiente, Universidad de las Fuerzas Armadas ESPE, Av. General Rumiñahui, s/n, 171103 Sangolquí, Ecuador;
关键词: Cultivated pastures;    CSM;    Precision agriculture;    DTM;    Aboveground biomass;   
DOI  :  
来源: DOAJ
【 摘 要 】

Pastures account for more than 56% of the total agricultural area of Ecuador and constitute the main food source for livestock. Hence, the agile, affordable, and reliable quantification of aboveground biomass (AGB) is an essential task in grazing utilization and management. In this paper, a method to estimate the AGB via aerial photogrammetry with a low-cost UAV multirotor is proposed. Digital terrain models and crop surface models were generated from data captured during two flights at different times, and the volume between them was calculated. An empirical relationship between volume and dry biomass was obtained by harvesting and weighing some samples and deriving a density factor (DF). The method was tested over 54 plots with different types of forage under differential fertilization treatments. Fertilized annual ryegrass exhibited the best growth and highest biomass (2632 kg/ha). The estimation and calculation of the crop volume via UAV-based photogrammetry saves time and generates notably precise (R2 = 0.78) information on the dry biomass.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次