| Journal of Industrial Engineering International | |
| An optimal policy for deteriorating items with time-proportional deterioration rate and constant and time-dependent linear demand rate | |
| Trailokyanath Singh1  Pandit Jagatananda Mishra2  Hadibandhu Pattanayak2  | |
| [1] Department of Mathematics, C. V. Raman College of Engineering;Department of Mathematics, Ravenshaw University; | |
| 关键词: Constant and time-dependent linear demand rate; Deteriorating items; EOQ; Time-proportional deterioration rate.; | |
| DOI : 10.1007/s40092-017-0198-6 | |
| 来源: DOAJ | |
【 摘 要 】
Abstract In this paper, an economic order quantity (EOQ) inventory model for a deteriorating item is developed with the following characteristics: (i) The demand rate is deterministic and two-staged, i.e., it is constant in first part of the cycle and linear function of time in the second part. (ii) Deterioration rate is time-proportional. (iii) Shortages are not allowed to occur. The optimal cycle time and the optimal order quantity have been derived by minimizing the total average cost. A simple solution procedure is provided to illustrate the proposed model. The article concludes with a numerical example and sensitivity analysis of various parameters as illustrations of the theoretical results.
【 授权许可】
Unknown