期刊论文详细信息
Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring
Robust automated computational approach for classifying frontotemporal neurodegeneration: Multimodal/multicenter neuroimaging
Olivier Piguet1  John R. Hodges1  Ramon Landin‐Romero1  Fiona Kumfor1  Eduar Herrera2  Howie Rosen3  Lucas Sedeño4  Facundo Manes4  Adolfo M. García4  Agustin Ibanez4  Diana Matallana5  Bruce Miller6  Cecilia Serrano7  Guido Orlando Pascariello8  Patricio Andres Donnelly‐Kehoe8  Hernando Santamaria‐Garcia9  Pablo Reyes9 
[1] Centre of Excellence in Cognition and its DisordersAustralian Research Council (ARC)SydneyAustralia;Departamento de Estudios PsicológicosUniversidad IcesiCaliColombia(eduar);Department of NeurologyMemory Aging Center, University of CaliforniaSan FranciscoCAUSA;Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT)INECO FoundationFavaloro UniversityBuenos AiresArgentina;Medical School, Aging InstitutePsychiatry and Mental Health, Pontificia Universidad Javeriana (PUJ)BogotáColombia;Memory and Aging Center, University of California, San FranciscoSan FranciscoCAUSA;Memory and Balance ClinicBuenos AiresArgentina;Multimedia Signal Processing Group ‐ Neuroimage DivisionFrench‐Argentine International Center for Information and Systems Sciences (CIFASIS) ‐ National Scientific and Technical Research Council (CONICET)RosarioArgentina;RadiologyHospital Universitario San Ignacio (HUSI)BogotáColombia;
关键词: Dementia;    bvFTD;    Data‐driven computational approaches;    Classifiers;    Neuroimaging;   
DOI  :  10.1016/j.dadm.2019.06.002
来源: DOAJ
【 摘 要 】

Abstract Introduction Timely diagnosis of behavioral variant frontotemporal dementia (bvFTD) remains challenging because it depends on clinical expertise and potentially ambiguous diagnostic guidelines. Recent recommendations highlight the role of multimodal neuroimaging and machine learning methods as complementary tools to address this problem. Methods We developed an automatic, cross‐center, multimodal computational approach for robust classification of patients with bvFTD and healthy controls. We analyzed structural magnetic resonance imaging and resting‐state functional connectivity from 44 patients with bvFTD and 60 healthy controls (across three imaging centers with different acquisition protocols) using a fully automated processing pipeline, including site normalization, native space feature extraction, and a random forest classifier. Results Our method successfully combined multimodal imaging information with high accuracy (91%), sensitivity (83.7%), and specificity (96.6%). Discussion This multimodal approach enhanced the system's performance and provided a clinically informative method for neuroimaging analysis. This underscores the relevance of combining multimodal imaging and machine learning as a gold standard for dementia diagnosis.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次