期刊论文详细信息
Boletim da Sociedade Paranaense de Matemática | |
The Generalized Difference of $\chi^{2}$ over $p-$ metric spaces defined by Musielak | |
N. Subramanian1  | |
[1] SASTRA UniversityDepartment of Mathematics; | |
关键词: analytic sequence; double sequences; $\chi^{2}$ space; difference sequence space; Musielak - modulus function; $p-$ metric space; Lacunary sequence; ideal; | |
DOI : 10.5269/bspm.v33i1.21805 | |
来源: DOAJ |
【 摘 要 】
In this paper, we define the sequence spaces: $\chi^{2qu}_{f\mu}\left(\Delta\right)$ and $\Lambda^{2qu}_{f\mu}\left(\Delta\right),$ where for any sequence $x=\left(x_{mn}\right),$ the difference sequence $\Delta x$ is given by $\left(\Delta x_{mn}\right)_{m,n=1}^{\infty}=\left[\left(x_{mn}-x_{mn+1}\right)-\left(x_{m+1n}-x_{m+1n+1}\right)\right]_{m,n=1}^{\infty}.$ We also study some properties and theorems of these spaces.
【 授权许可】
Unknown