期刊论文详细信息
Boletim da Sociedade Paranaense de Matemática
The Generalized Difference of $\chi^{2}$ over $p-$ metric spaces defined by Musielak
N. Subramanian1 
[1] SASTRA UniversityDepartment of Mathematics;
关键词: analytic sequence;    double sequences;    $\chi^{2}$ space;    difference sequence space;    Musielak - modulus function;    $p-$ metric space;    Lacunary sequence;    ideal;   
DOI  :  10.5269/bspm.v33i1.21805
来源: DOAJ
【 摘 要 】

In this paper, we define the sequence spaces: $\chi^{2qu}_{f\mu}\left(\Delta\right)$ and $\Lambda^{2qu}_{f\mu}\left(\Delta\right),$ where for any sequence $x=\left(x_{mn}\right),$ the difference sequence $\Delta x$ is given by $\left(\Delta x_{mn}\right)_{m,n=1}^{\infty}=\left[\left(x_{mn}-x_{mn+1}\right)-\left(x_{m+1n}-x_{m+1n+1}\right)\right]_{m,n=1}^{\infty}.$ We also study some properties and theorems of these spaces.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次