eLife | |
Inhibitory muscarinic acetylcholine receptors enhance aversive olfactory learning in adult Drosophila | |
Andrew C Lin1  Anthi A Apostolopoulou1  Hoger Amin1  Noa Bielopolski2  Moshe Parnas2  Hadas Lerner2  Eyal Rozenfeld2  Wolf Huetteroth3  | |
[1] Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom;Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel;Institute for Biology, University of Leipzig, Leipzig, Germany; | |
关键词: Drosophila; learning and memory; mushroom body; muscarinic receptor; olfaction; | |
DOI : 10.7554/eLife.48264 | |
来源: DOAJ |
【 摘 要 】
Olfactory associative learning in Drosophila is mediated by synaptic plasticity between the Kenyon cells of the mushroom body and their output neurons. Both Kenyon cells and their inputs from projection neurons are cholinergic, yet little is known about the physiological function of muscarinic acetylcholine receptors in learning in adult flies. Here, we show that aversive olfactory learning in adult flies requires type A muscarinic acetylcholine receptors (mAChR-A), particularly in the gamma subtype of Kenyon cells. mAChR-A inhibits odor responses and is localized in Kenyon cell dendrites. Moreover, mAChR-A knockdown impairs the learning-associated depression of odor responses in a mushroom body output neuron. Our results suggest that mAChR-A function in Kenyon cell dendrites is required for synaptic plasticity between Kenyon cells and their output neurons.
【 授权许可】
Unknown