Life | |
Survival of Self-Replicating Molecules under Transient Compartmentalization with Natural Selection | |
Luca Peliti1  Gabin Laurent2  David Lacoste2  | |
[1] Santa Marinella Research Institute, 00052 Santa Marinella, Italy;UMR CNRS Gulliver 7083, ESPCI, 10 rue Vauquelin, CEDEX 05, 75231 Paris, France; | |
关键词: origin of life; error catastrophe; parasites; | |
DOI : 10.3390/life9040078 | |
来源: DOAJ |
【 摘 要 】
The problem of the emergence and survival of self-replicating molecules in origin-of-life scenarios is plagued by the error catastrophe, which is usually escaped by considering effects of compartmentalization, as in the stochastic corrector model. By addressing the problem in a simple system composed of a self-replicating molecule (a replicase) and a parasite molecule that needs the replicase for copying itself, we show that transient (rather than permanent) compartmentalization is sufficient to the task. We also exhibit a regime in which the concentrations of the two kinds of molecules undergo sustained oscillations. Our model should be relevant not only for origin-of-life scenarios but also for describing directed evolution experiments, which increasingly rely on transient compartmentalization with pooling and natural selection.
【 授权许可】
Unknown