Sustainability | |
Evaluation of Water Circulation by Modeling: An Example of Nonpoint Source Management in the Yeongsan River Watershed | |
Kyunghyun Kim1  Jiyeon Choi1  Jinsun Kim1  Yongseok Kim1  Jong Mun Lee1  Minji Park1  Bae Kyung Park1  | |
[1] Water Environmental Research Department, National Institute of Environmental Research (NIER), Incheon 22689, Korea; | |
关键词: impervious area; nonpoint sources; HSPF watershed model; direct runoff; water circulation rate; water circulation management goal; | |
DOI : 10.3390/su13168871 | |
来源: DOAJ |
【 摘 要 】
Owing to urbanization, impervious areas within watersheds have continuously increased, distorting healthy water circulation systems by reducing soil infiltration and base flow; moreover, increases in surface runoff deteriorate water quality by increasing the inflow of nonpoint sources. In this study, we constructed a Hydrological Simulation Program—Fortran (HSPF) watershed model that applies the impervious area and can set medium- and long-term water circulation management goals for watershed sub-areas. The model was tested using a case study from the Yeongsan River watershed, Korea. The results show that impervious land-cover accounts for 18.47% of the upstream reach in which Gwangju City is located; approximately twice the average for the whole watershed. Depending on the impervious area reduction scenario, direct runoff and nonpoint source load could be reduced by up to 56% and 35%, respectively; the water circulation rate could be improved by up to 16%. Selecting management goals requires the consideration of both policy objectives and budget. For urban areas with large impervious cover, the designation of nonpoint source management areas is required. For new cities, it is necessary to introduce water circulation systems (e.g., low impact development techniques) to improve rainwater penetration and recharge and activate preemptive water circulation.
【 授权许可】
Unknown