| IEEE Journal of the Electron Devices Society | |
| On the Performance and Scaling of Symmetric Lateral Bipolar Transistors on SOI | |
| Tak H. Ning1  Jin Cai1  | |
| [1] IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA; | |
| 关键词: Bipolar transistors; complementary bipolar transistors; lateral bipolar transistors; SOI devices; | |
| DOI : 10.1109/JEDS.2012.2233272 | |
| 来源: DOAJ | |
【 摘 要 】
The performance potential and scaling characteristics of thin-base SOI symmetric lateral bipolar transistors were examined using 1-D analytic equations for the currents and capacitances. The device can operate at collector current densities >100 mA/μm2, and it scales similarly to CMOS in terms of density. The physical base width is scalable to less than 20 nm. Multiple devices of different specifications can be integrated on a chip. A sample design is shown to have fT > 200 GHz, fmax >1 THz, VA > 4V, and a self gain of 60. A balanced design is shown to have 350-GHz fT and 700-GHz fmax, VA of 2.4 V, and a self gain of 20. These results are superior to those reported for 32 nm SOI CMOS. The results suggest a need to rethink bipolar circuit design. They also suggest opportunities for novel bipolar and BiCMOS circuits. The devices in high-speed Si-base bipolar circuits operate at about 1.0 V. The path toward 0.5 V bipolar circuits is to use semiconductors with smaller bandgap, such as Ge.
【 授权许可】
Unknown