Current Directions in Biomedical Engineering | |
Histological evaluation of a cochlear implant electrode array with electrically activated shape change for perimodiolar positioning | |
Pawsey Nick1  Suzaly N.úha2  Hügl Silke2  Majdani Lenarz2  Majdani Omid2  Rau Thomas S.3  | |
[1] Cochlear Limited, 1 University Avenue, Macquarie University,Sydney, NSW 2109, Australia;Department of Otolaryngology, Hannover Medical School, Carl- Neuberg-Str. 1, 30625Hannover, Germany;Department of Otolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625Hannover, Germany; | |
关键词: shape memory allow; nitinol; niti; insertion trauma; inner ear; electrical heating; electrical activation; | |
DOI : 10.1515/cdbme-2018-0036 | |
来源: DOAJ |
【 摘 要 】
For the treatment of deafness or severe hearing loss cochlear implants (CI) are used to stimulate the auditory nerve of the inner ear. In order to produce an electrode array which is both atraumatic and reaches a perimodiolar final position a design featuring shape memory effect was proposed. A Nitinol wire with a diameter of 100 μm was integrated in a state of the art lateral wall electrode array. The wire serves as an actuator after it has been ‘trained’ to adopt the spiral shape of an average human cochlea. Three small diameter platinum-iridium wires (each 20 μm) were crimped to the Nitinol wire in order to produce thermal energy. An insertion test was pursued using a human temporal bone specimen. The prototype electrode array was cooled down by means of immersion in ice water and freeze spray to enable sufficient straightening. Thereafter, insertion into the cochlea through the round window as performed. Insertion was feasible but difficult as premature curling of the electrode occurred during the movement towards the inner ear while passing the middle ear cavity. Therefore, the insertion had to be performed faster than usual. The shape memory actuator was subsequently activated with 450mA current at 5V for 3 seconds. After insertion the specimen was embedded in epoxy resin, microgrinded and all histological slices were assessed for trauma. Perimodiolar position was achieved. No insertion trauma was observed and there were no indications of thermal damage caused by the electrical heating. To the best of our knowledge, this is the first histological evaluation of the insertion trauma caused by an electrically activated shape memory electrode array. These promising results support further research on shape memory CI electrode arrays.
【 授权许可】
Unknown